If it's not what You are looking for type in the equation solver your own equation and let us solve it.
z^2+8z+4=0
a = 1; b = 8; c = +4;
Δ = b2-4ac
Δ = 82-4·1·4
Δ = 48
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{48}=\sqrt{16*3}=\sqrt{16}*\sqrt{3}=4\sqrt{3}$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-4\sqrt{3}}{2*1}=\frac{-8-4\sqrt{3}}{2} $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+4\sqrt{3}}{2*1}=\frac{-8+4\sqrt{3}}{2} $
| -56=3r+9.1 | | 3|x-1|=21 | | 8+-x/10=-2 | | 40/4=9/x | | 5m^2-2=-3m | | 3j^2-8j+4=0 | | .5(5x-15)=2.5(x+3) | | -4/5(x-3)=-16 | | 30/3=5/x | | Y+x-22=0 | | (4x-7)-3=15-4x+16 | | 5/x+9=18 | | 12x+2=-24 | | 6/2=18/x | | -5n-2=-2n-26 | | -8x+2=188 | | 5y+8=3y+6 | | C=1/2(9^2+x)3.14 | | 8x–3(2x+5)=13 | | 60/3=4/x | | x+10.4=7.2 | | –4x^2+80x=148 | | (n*(-5))-2=26-(-2n) | | 2x+9x–7x+5=21 | | x-8.6=-2.9 | | f^2+3f-7=0 | | 72/8=9/x | | -x/7+3=4 | | 52=-5m+7 | | 24/4=30/x | | 4+2(5x-8)=-10x+-12 | | 18/3=24/x |